Sphere Packings, I

نویسنده

  • Thomas C. Hales
چکیده

We describe a program to prove the Kepler conjecture on sphere packings. We then carry out the first step of this program. Each packing determines a decomposition of space into Delaunay simplices, which are grouped together into finite configurations called Delaunay stars. A score, which is related to the density of packings, is assigned to each Delaunay star. We conjecture that the score of every Delaunay star is at most the score of the stars in the face-centered cubic and hexagonal close packings. This conjecture implies the Kepler conjecture. To complete the first step of the program, we show that every Delaunay star that satisfies a certain regularity condition satisfies the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Doubling, Double-circulants, and New Sphere Packings

New nonlattice sphere packings in dimensions 20, 22, and 44–47 that are denser than the best previously known sphere packings were recently discovered. We extend these results, showing that the density of many sphere packings in dimensions just below a power of 2 can be doubled using orthogonal binary codes. This produces new dense sphere packings in Rn for n = 25, 26, . . . , 31 and 55, 56, . ...

متن کامل

Deriving Finite Sphere Packings

Sphere packing problems have a rich history in both mathematics and physics; yet, relatively few analytical analyses of sphere packings exist, and answers to seemingly simple questions are unknown. Here, we present an analytical method for deriving all packings of n spheres in R3 satisfying minimal rigidity constraints (≥ 3 contacts per sphere and ≥ 3n− 6 total contacts). We derive such packing...

متن کامل

Disks vs. Spheres: Contrasting Properties of Random Packings

Collections of random packings of rigid disks and spheres have been generated by computer using a previously described concurrent algorithm. Particles begin as infinitesimal moving points, grow in size at a uniform rate, undergo energynonconserving collisions, and eventually jam up. Periodic boundary conditions apply, and various numbers of particles have been considered (N~<2000 for disks, N~<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1997